Organizing and Mining HTS Data using Data Pipelining

Robert Brown, David Rogers and Andrei Caracoti, SciTegic Inc

ALA LabFusion 2004, Boston
Outline

• Introduction to data pipelining

• Methods
 – Extended connectivity fingerprints
 – Bayesian learning

• Case study
 – Data mining the NCI AIDS data set
 – Simulating screening prioritization
Data Pipelining

- A powerful new paradigm for data processing
- Pipelines guide the flow of data through a network of modular computational components
Data Pipelining

- A powerful new paradigm for data processing
- Pipelines guide the flow of data through a network of modular computational components
Data Pipelining

• A powerful new paradigm for data processing
• Pipelines guide the flow of data through a network of modular computational components
Data pipelining enables

- Processing of data from multiple disparate data sources
- Integration of disparate applications
- Rapid processing of large amounts of data
- Automated execution of routine processes
- Capture of best practice
Data pipelining enables

- Processing of data from multiple disparate data sources
- Integration of disparate applications
- Rapid processing of large amounts of data
- Automated execution of routine processes
- Capture of best practice
Data pipelining enables

- Processing of data from multiple disparate data sources
- Integration of disparate applications
- Rapid processing of large amounts of data
- Automated execution of routine processes
- Capture of best practice
Data pipelining enables

- Processing of data from multiple disparate data sources
- Integration of disparate applications
- Rapid processing of large amounts of data
- Automated execution of routine processes
- Capture of best practice
Outline

• Introduction to data pipelining

• Methods
 – Extended connectivity fingerprints
 – Bayesian learning

• Case study
 – Data mining the NCI AIDS data set
 – Simulating screening prioritization
Extended Connectivity Fingerprints (ECFP)

• A new descriptor for molecular characterization

• Goals of the fingerprint
 – Be comprehensive – encode “all” features within a structure
 • do not rely on a pre-defined dictionary of features
 • encode tertiary/quaternary information (c.f. path fingerprints)
 • encode substitution patterns to the fragment
 – Create an interpretable model
 • Each bit in the fingerprint should represent a single decodable feature
 – Be fast to calculate
 • Model building and especially virtual screening should be fast processes
The FP Generation Process

• Process based on the Morgan algorithm
 – One of the first methods developed for computational chemistry

• Each atom is given an initial atom code
 – ECFP: Specific atom typing
 – FCFP: Abstract functional role of atom

• A number of iterations are performed
 – Each atom collects information from its neighbors
 • N iterations define structures 2N bonds wide
 – Resulting feature is mapped into a 2^{32} address space
Assignment of Initial Atom Codes

- ECFPs
 - Atom type
 - Atom charge
 - Atom mass
 - Valence
 - Number of bond to non-hydrogens
 - Number of bonds to hydrogens

- Variant is to use the 120 AlogP atom types
Extending the initial atom codes

- Record (bond-type, atom-type) codes for each neighbour
- Sort to avoid order dependency
- Apply hashing function to map to a single number in the 2^{32} address space (~4 billion bits)
- Chance of collisions is extremely low
ECFP: Generating the Fingerprint

- Iteration is repeated desired number of times
- Codes from all iterations are collected
- Duplicate bits are removed
- Information gain diminishes after a few iterations

<table>
<thead>
<tr>
<th>Molecule</th>
<th>ECFP_0</th>
<th>ECFP_2</th>
<th>ECFP_4</th>
<th>ECFP_6</th>
<th>ECFP_8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-182236392</td>
<td>-182236392</td>
<td>-182236392</td>
<td>-182236392</td>
<td>-182236392</td>
</tr>
<tr>
<td></td>
<td>642810091</td>
<td>642810091</td>
<td>642810091</td>
<td>642810091</td>
<td>642810091</td>
</tr>
<tr>
<td></td>
<td>-1100000244</td>
<td>-1100000244</td>
<td>-1100000244</td>
<td>-1100000244</td>
<td>-1100000244</td>
</tr>
<tr>
<td></td>
<td>-1074141656</td>
<td>-1074141656</td>
<td>-1074141656</td>
<td>-1074141656</td>
<td>-1074141656</td>
</tr>
<tr>
<td></td>
<td>1572579716</td>
<td>1572579716</td>
<td>1572579716</td>
<td>1572579716</td>
<td>1572579716</td>
</tr>
<tr>
<td></td>
<td>-1997021792</td>
<td>-1997021792</td>
<td>-1997021792</td>
<td>-1997021792</td>
<td>-1997021792</td>
</tr>
<tr>
<td></td>
<td>1996767644</td>
<td>1996767644</td>
<td>1996767644</td>
<td>1996767644</td>
<td>1996767644</td>
</tr>
<tr>
<td></td>
<td>-175146122</td>
<td>-175146122</td>
<td>-175146122</td>
<td>-175146122</td>
<td>-175146122</td>
</tr>
<tr>
<td></td>
<td>852414842</td>
<td>852414842</td>
<td>852414842</td>
<td>852414842</td>
<td>852414842</td>
</tr>
<tr>
<td></td>
<td>-2099970318</td>
<td>-2099970318</td>
<td>-2099970318</td>
<td>-2099970318</td>
<td>-2099970318</td>
</tr>
<tr>
<td></td>
<td>-932108170</td>
<td>-932108170</td>
<td>-932108170</td>
<td>-932108170</td>
<td>-932108170</td>
</tr>
<tr>
<td></td>
<td>-1564392544</td>
<td>-1564392544</td>
<td>-1564392544</td>
<td>-1564392544</td>
<td>-1564392544</td>
</tr>
<tr>
<td></td>
<td>1571214559</td>
<td>1571214559</td>
<td>1571214559</td>
<td>1571214559</td>
<td>1571214559</td>
</tr>
<tr>
<td></td>
<td>1451403962</td>
<td>1451403962</td>
<td>1451403962</td>
<td>1451403962</td>
<td>1451403962</td>
</tr>
<tr>
<td></td>
<td>284029635</td>
<td>284029635</td>
<td>284029635</td>
<td>284029635</td>
<td>284029635</td>
</tr>
<tr>
<td></td>
<td>-948152242</td>
<td>-948152242</td>
<td>-948152242</td>
<td>-948152242</td>
<td>-948152242</td>
</tr>
<tr>
<td></td>
<td>-1555299234</td>
<td>-1555299234</td>
<td>-1555299234</td>
<td>-1555299234</td>
<td>-1555299234</td>
</tr>
<tr>
<td></td>
<td>-281505363</td>
<td>-281505363</td>
<td>-281505363</td>
<td>-281505363</td>
<td>-281505363</td>
</tr>
<tr>
<td></td>
<td>-344170121</td>
<td>-344170121</td>
<td>-344170121</td>
<td>-344170121</td>
<td>-344170121</td>
</tr>
</tbody>
</table>
FCFP: Functional-Class Fingerprints

- Use the role of an atom in the initial atom code rather than the atom type
 - Halogens give the same code
 - Hydrogen bond donors equivalent
 - Hydrogen bond acceptors equivalent

FCFP Atom code bits from:
1: Has lone pairs
2: Is H-bond donor
4: Is negative ionizable
8: Is positive ionizable
16: Is aromatic
32: Is halogen
FCFP: Generating the Fingerprint

- Again, the information gained by reaching out further diminishes.
ECFPs and FCFPs

- New class of fingerprints for molecular characterization
 - Each bit represents the presence of a structural (not substructural) feature
 - Multiple levels of abstraction contained in single FP

- Large but sparse
 - Typical molecule generates 100s - 1000s of bits
 - Typical library generates 100K - 10M different bits.

- Fast
 - Generated at 10,000 mols/sec (2GHz PC)
 - Tanimoto pairwise similarities at ~500K comparisons/sec
Outline

• Introduction to data pipelining

• Methods
 – Extended connectivity fingerprints
 – Bayesian learning

• Case study
 – Data mining the NCI AIDS data set
 – Simulating screening prioritization
Bayesian Learning

• Build a model which estimates the likelihood that a given data sample is from a "good" subset of a larger set of samples (classification learning)

• Ideal for vHTS applications
 – Efficient:
 • Fast & scales linearly with large data sets
 – Robust:
 • works for a few as well as many ‘good’ examples
 – Unsupervised:
 • no tuning parameters needed
 – Multimodal:
 • can model broad classes of compounds
 • multiple modes of action represented in a single model
The Model

- Input is a training set with descriptors, a response variable and a test for good
- A feature is a binary attribute of a data record
 - For molecules: a property range or a fingerprint bit
- A count of each feature is kept:
 - Over all the samples
 - Over all samples that pass the test for good
- Normalized probability is calculated for each feature
 - log(Laplacian corrected probability)
- The normalized probabilities are summed over all features to give the relative score
An example model

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Equation "MAOInhibitorLike"</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Features from: ("FCFP_6" LongFingerprintType)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Features from: ("ALogP" DoubleType)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Features from: ("Molecular_Veight" DoubleType)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Features from: ("Num_H_Donors" LongType)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Features from: ("Num_H_Acceptors" LongType)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Features from: ("Num_RotatableBonds" LongType)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Feature Statistics:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Property "FCFP_6":</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Total # of features in all samples: 250988 in subset: 4004</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>POSITIVE BINS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Bin ID</td>
<td>G1</td>
<td>G2</td>
<td>G3</td>
</tr>
<tr>
<td>16</td>
<td>Bin Value</td>
<td>-1290796621</td>
<td>-821137192</td>
<td>638618274</td>
</tr>
<tr>
<td>17</td>
<td>Feature Co</td>
<td>23</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>18</td>
<td>Subset Co</td>
<td>15</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>19</td>
<td>Normalized</td>
<td>2.46003</td>
<td>2.323228</td>
<td>2.309748</td>
</tr>
<tr>
<td>51</td>
<td>NEGATIVE BINS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Bin ID</td>
<td>B1</td>
<td>B2</td>
<td>B3</td>
</tr>
<tr>
<td>53</td>
<td>Bin Value</td>
<td>565968762</td>
<td>-1549163031</td>
<td>394124770</td>
</tr>
<tr>
<td>54</td>
<td>Feature Co</td>
<td>759</td>
<td>360</td>
<td>325</td>
</tr>
<tr>
<td>55</td>
<td>Subset Co</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>56</td>
<td>Normalized</td>
<td>-2.585342</td>
<td>-1.908514</td>
<td>-1.82208</td>
</tr>
</tbody>
</table>
Normalized Probability

• Given a set of N samples

• Given that some subset A of them are good (‘active’) – Then we estimate for a new compound: $P(\text{good}) \sim A / N$ – For a new feature to the model, this is our base estimate.

• Given a set of binary features F_i – For a given feature F: • It appears in N_F samples • It appears in A_F good samples
 – Can we estimate $P(\text{good} \mid F) \sim A_F / N_F$? • Different features are sampled different numbers of times • Error gets worse as $N_F \to \text{small}$
Normalized Probability

• Solution: renormalize probabilities to baseline
 – Can be thought of as adding a single sample at baseline probability

• \[P'(\text{good} \mid F) = \frac{AF + P(\text{good})K}{NF + K} \]
 – \(P'(\text{good} \mid F) \rightarrow P(\text{good}) \) as \(NF \rightarrow 0 \)
 • Assume: Most features have no relationship with activity
 – \(P'(\text{good} \mid F) \rightarrow \frac{AF}{NF} \) as \(NF \rightarrow \text{large} \)
 • Assume: more instances of the observation the more likely it is not an artifact

• If \(K = 1/P(\text{good}) \) this is the Laplacian correction
Outline

• Introduction to data pipelining

• Methods
 – Extended connectivity fingerprints
 – Bayesian learning

• Case study
 – Data mining the NCI AIDS data set
 – Simulating screening prioritization
Case Study: NCI AIDS data

- ~32,000 compounds selected for HTS
- Whole-cell assay
- Found 230 confirmed hits (“CA”)
- Represent 7 “activity classes” (modes of activity)
Results of Bayesian modeling

- Data split 50/50
 - Trained on 16,000 samples w/ 115 hits
 - FCFP_6, AlogP, MW, #HBA, #HBD, #Rot Bonds
- Results:
 - Would have discovered 80% of actives screening ~600 cmpds
 - Model learned multiple modes of activity
…ask more of your data

Robust to small numbers of hits

- Data split 5/95
 - Trained on ~1,600 samples, 14 hits
- Results:
 - Would have discovered 80% of actives screening ~3,000 cmpds
Robust to noise in hits

- Data split 50/50
 - 5% of negatives in training set reassigned as *false positives*
 - Data contained 115 true actives and ~800 false actives

- Results:
 - Would have discovered 80% of actives screening ~1,500 cmpds
Robust to weak actives for training

- Data split 50/50
 - All confirmed actives (CA) removed to test set
 - Trained on 130 confirmed *moderately active* (CM) compounds

- Results:
 - Weak actives aided in discovery of highly-active compounds
Search for false negatives

- False negatives problematic
 - Costly to retest negatives
 - Can disrupt SAR studies
- Experiment:
 - Take half of 230 hits and mark them as inactive
 - Build model with data set
 - Sort negatives for retest
Search for false negatives

- 85% found in top 5% of negatives
Outline

• Introduction to data pipelining

• Methods
 – Extended connectivity fingerprints
 – Bayesian learning

• Case study
 – Data mining the NCI AIDS data set
 – Simulating screening prioritization
Screening Prioritization

• HTS Screening strategies
 – Screen the entire compound collection
 – Iterative screening
 • Screen the entire collection in ordered subsets
 • Screen the collection in ordered subsets and stop when returns are diminishing (each screening point costs US$0.25 upwards)

• Iterative screening
 – Screen a subset
 • Random / Ordered
 • Build a model of the screening results
 • Prioritize the remaining compounds and select the next subset to screen
 • Update the model and select the next subset
 • Repeat until
 – No more compounds
 – Hit rate falls below a set level
Example

• Using the same NCI AIDS data set
 – Select a subset at random (384, 768, 1536, 3072)
 – “Screen” (i.e look up # actives)
 – Build a Bayesian model
 – Score the remaining compounds
 – Sort by score
 – Select the next subset of the same size and “screen”
 – Repeat until all molecules are “screened”

• Additional experiment
 – Restrict the initial random subset to weakly actives
Initial set contains CA (Actives)
...ask more of your data

Initial set contains only CM (Weak Actives)
Using the models

- Models can be used as virtual screens to filter
 - Virtual combichem libraries
 - Vendor files e.g. Maybridge
 - Vendor databases e.g. ACD
 - Corporate databases
Summary

• New fingerprint for molecular characterization
 – Fast, comprehensive and interpretable

• Bayesian learning
 – Successfully model HTS data
 – Robust to low hit rate and noise
 – Able to identify false negatives for retest

• Screening prioritization
 – Can identify most actives early in a screen

• Data pipelining provides the infrastructure for successful deployment of virtual screening